Evaluate with Confidence Estimation: Machine ranking of translation outputs using grammatical features

نویسندگان

  • Eleftherios Avramidis
  • Maja Popovic
  • David Vilar
  • Aljoscha Burchardt
چکیده

We present a pilot study on an evaluation method which is able to rank translation outputs with no reference translation, given only their source sentence. The system employs a statistical classifier trained upon existing human rankings, using several features derived from analysis of both the source and the target sentences. Development experiments on one language pair showed that the method has considerably good correlation with human ranking when using features obtained from a PCFG parser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Parallel Features in Parsing of Machine-Translated Sentences for Correction of Grammatical Errors

In this paper, we present two dependency parser training methods appropriate for parsing outputs of statistical machine translation (SMT), which pose problems to standard parsers due to their frequent ungrammaticality. We adapt the MST parser by exploiting additional features from the source language, and by introducing artificial grammatical errors in the parser training data, so that the trai...

متن کامل

Machine learning methods for comparative and time-oriented Quality Estimation of Machine Translation output

This paper describes a set of experiments on two sub-tasks of Quality Estimation of Machine Translation (MT) output. Sentence-level ranking of alternative MT outputs is done with pairwise classifiers using Logistic Regression with blackbox features originating from PCFG Parsing, language models and various counts. Post-editing time prediction uses regression models, additionally fed with new el...

متن کامل

Selecting Feature Sets for Comparative and Time-Oriented Quality Estimation of Machine Translation Output

This paper describes a set of experiments on two sub-tasks of Quality Estimation of Machine Translation (MT) output. Sentence-level ranking of alternative MT outputs is done with pairwise classifiers using Logistic Regression with blackbox features originating from PCFG Parsing, language models and various counts. Post-editing time prediction uses regression models, additionally fed with new el...

متن کامل

Automatic Projection of Semantic Structures: an Application to Pairwise Translation Ranking

We present a model for the inclusion of semantic role annotations in the framework of confidence estimation for machine translation. The model has several interesting properties, most notably: 1) it only requires a linguistic processor on the (generally well-formed) source side of the translation; 2) it does not directly rely on properties of the translation model (hence, it can be applied beyo...

متن کامل

Quality Estimation Of Machine Translation Outputs Through Stemming

Machine Translation is the challenging problem for Indian languages. Every day we can see some machine translators being developed , but getting a high quality automatic translation is still a very distant dream . The correct translated sentence for Hindi language is rarely found. In this paper, we are emphasizing on English-Hindi language pair, so in order to preserve the correct MT output we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011